Hash表
Ha定义
哈希:哈希可以理解为一种映射关系(或者可以理解为一种函数关系),在数字哈希里面是数字到数字的映射,在字符串哈希里是字符串到数字的映射,这种巧妙的映射关系保证了哈希算法在处理某些问题时具有高效性。
一般哈希表都是用来快速判断一个元素是否出现集合里。
要枚举的话时间复杂度是O(n),但如果使用哈希表的话, 只需要O(1)就可以做到。
当我们想使用哈希法来解决问题的时候,我们一般会选择如下三种数据结构。
- 数组
- set (集合)
- map(映射)
在C++中,set 和 map 分别提供以下三种数据结构,其底层实现以及优劣如下表所示:
集合 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::set | 红黑树 | 有序 | 否 | 否 | O(log n) | O(log n) |
std::multiset | 红黑树 | 有序 | 是 | 否 | O(logn) | O(logn) |
std::unordered_set | 哈希表 | 无序 | 否 | 否 | O(1) | O(1) |
std::unordered_set
底层实现为哈希表,std::set
和std::multiset
的底层实现是红黑树,红黑树是一种平衡二叉搜索树,所以key值是有序的,但key不可以修改,改动key值会导致整棵树的错乱,所以只能删除和增加。
映射 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::map | 红黑树 | key有序 | key不可重复 | key不可修改 | O(logn) | O(logn) |
std::multimap | 红黑树 | key有序 | key可重复 | key不可修改 | O(log n) | O(log n) |
std::unordered_map | 哈希表 | key无序 | key不可重复 | key不可修改 | O(1) | O(1) |
拉链法
int h[N], e[N], ne[N], idx;
// 向哈希表中插入一个数
void insert(int x)
{
int k = (x % N + N) % N;
e[idx] = x;
ne[idx] = h[k];
h[k] = idx ++ ;
}
// 在哈希表中查询某个数是否存在
bool find(int x)
{
int k = (x % N + N) % N;
for (int i = h[k]; i != -1; i = ne[i])
if (e[i] == x)
return true;
return false;
}
开放寻址法
int h[N];
// 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置
int find(int x)
{
int t = (x % N + N) % N;
while (h[t] != null && h[t] != x)
{
t ++ ;
if (t == N) t = 0;
}
return t;
}
字符串哈希
核心思想:将字符串看成P进制数,P的经验值是131
或13331
,取这两个值的冲突概率低
小技巧:取模的数用2^64
,这样直接用unsigned long long
存储,溢出的结果就是取模的结果
typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64
// 初始化
p[0] = 1;
for (int i = 1; i <= n; i ++ )
{
h[i] = h[i - 1] * P + str[i];
p[i] = p[i - 1] * P;
}
// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r)
{
return h[r] - h[l - 1] * p[r - l + 1];
}
题目:
242.有效的字母异位词:https://leetcode.cn/problems/valid-anagram/
思路:
- 将每个字符串中的数字映射到0-25,
s[a[i]-'a']
; - 再比较两个数组是否相同即可.
- 优化,只开一个数组,遍历第二个字符串的时候,让数组中对应的元素--,然后判断数组中的所有元素是否为0.