堆
堆的性质
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树。
- 最后一个非叶结点是第
n/2
个结点。这里建堆的时候会用到,复杂度可以降到O(n)
; - 如果一个点为u,那么它的左儿子为
2*u
,右儿子为2*u+1
- 对于小根堆来讲,每个以u为根节点的树,它的左右儿子的值一定大于父节点。所以对堆进行建立的时候,如果当前点与它的左右儿子并不满足这一性质,就需要进行交换。
- 小根堆:子节点比父节点大
- 大根堆:子节点比父节点小
建堆的过程:
从n/2
开始,到1即可,
代码
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置
// hp[k]存储堆中下标是k的点是第几个插入的
int h[N], ph[N], hp[N], size;
// 交换两个点,及其映射关系
void heap_swap(int a, int b)
{
swap(ph[hp[a]],ph[hp[b]]);
swap(hp[a], hp[b]);
swap(h[a], h[b]);
}
void down(int u)
{
int t = u;
if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if (u != t)
{
heap_swap(u, t);
down(t);
}
}
void up(int u)
{
while (u / 2 && h[u] < h[u / 2])
{
heap_swap(u, u / 2);
u >>= 1;
}
}
// O(n)建堆
for (int i = n / 2; i; i -- ) down(i);