同余-乘法逆元-费马小定理
同余:
如果两个整数模的余数相同,则模同余
LaTex公式为a \equiv b(\bmod m)
乘法逆元:
如果互质,且满足,则称为模的乘法逆元
费马小定理
若是质数,且互质,则,例如 由费马小定理得:,则是的乘法逆元
代码
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define debug(x) cout<<"a["<<x<<"]="<<a[x]<<endl;
#define pr(x) cout<<x<<endl;
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
typedef long long LL;
typedef pair<int, int> PII;
const int INF = 0x3f3f3f3f;
const int N = 1e5 + 10;
int qmi(int a,int b,int p){
int res=1;
while (b){
if (b&1) res=res*a%p;
a=a*a%p;
b>>=1;
}
return res;
}
int main() {
IOS;
#ifndef ONLINE_JUDGE
freopen("/Users/houyunfei/CLionProjects/MyCppWorkSpace/test.in", "r", stdin);
freopen("/Users/houyunfei/CLionProjects/MyCppWorkSpace/test.out", "w", stdout);
#endif
int a,p;
cin>>a>>p;
if (a%p) pr(qmi(a,p-2,p))
return 0;
}