跳到主要内容

同余-乘法逆元-费马小定理

同余:

如果两个整数a,ba,bmm的余数相同,则a,ba,bmm同余ab(modm)a \equiv b(\bmod m) LaTex公式为a \equiv b(\bmod m)

乘法逆元:

如果a,ba,b互质,且满足ax1(modb)ax \equiv 1(\bmod b),则称xxaabb的乘法逆元

费马小定理

pp是质数,且a,pa,p互质,则ap11(modp)a^{p-1} \equiv 1 (\bmod p),例如4311(mod3)4^{3-1} \equiv 1 (\bmod 3) 由费马小定理得:aap21(modp)a*a^{p-2} \equiv 1(\bmod p),则ap2a^{p-2}apa^p的乘法逆元

代码

#include <bits/stdc++.h>

using namespace std;

#define endl '\n'
#define debug(x) cout<<"a["<<x<<"]="<<a[x]<<endl;
#define pr(x) cout<<x<<endl;
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)

typedef long long LL;
typedef pair<int, int> PII;
const int INF = 0x3f3f3f3f;
const int N = 1e5 + 10;

int qmi(int a,int b,int p){
int res=1;
while (b){
if (b&1) res=res*a%p;
a=a*a%p;
b>>=1;
}
return res;
}

int main() {
IOS;
#ifndef ONLINE_JUDGE
freopen("/Users/houyunfei/CLionProjects/MyCppWorkSpace/test.in", "r", stdin);
freopen("/Users/houyunfei/CLionProjects/MyCppWorkSpace/test.out", "w", stdout);
#endif
int a,p;
cin>>a>>p;
if (a%p) pr(qmi(a,p-2,p))

return 0;
}